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1. Introduction 

Piezoelectric materials possess the unique property that when subjected to a deformation, they 
produce electricity.  Conversely, when these materials are subjected to an electric field, they 
undergo deformation.  This unique property has been exploited by researchers and engineers to 
achieve desired effects such as in the design of the ignition system in the rocket-propelled 
grenade launcher (RPG) (shown in figure 1); it continues to intrigue researchers with its promise 
in the design of new systems and devices.  New piezoelectric applications are limited only by the 
imagination.  Figure 2 shows rotor blade research conducted at the University of Maryland in an 
attempt to design smart controllable blades that have desirable twist characteristics.  

 
Source:  http://science.howstuffworks.com/rpg3.htm. 
Figure 1.  RPG launcher.   

 

 
Source:  http://www.enae.umd.edu/AGRC/ 

pict/. 
Figure 2.  Smart controllable rotorcraft twist 

research.   
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At the United States Military Academy, students and researchers (Labo, 2005) have researched 
the incorporation of piezoelectric materials in combat boots (see figures 3 and 4).  This research 
was motivated by an attempt to capture the excess energy generated during the natural gait of a 
soldier’s step.  Other uses of piezoelectric materials include sophisticated power generation 
systems for microsensors and microelectromechanical systems devices and household uses such 
as ignition switches for propane barbeque grills. 

 

Figure 3.  Piezoelectric board inserted into a combat boot. 

 

Figure 4.  Piezoelectric board. 

2. PZT Monoclinic Structure 

The introduction to piezoelectric materials just mentioned motivates an explanation of how 
piezoelectric materials work.  To do this, the molecular makeup of these materials must be 
examined.  To limit the scope of this explanation and stay within the context of the available 
research, the piezoelectric material 348.052.0 OTiPbZr  will be discussed.  The material 

348.052.0 OTiPbZr  (see figure 5) is a subset of piezoelectric materials called PZTs that contain  
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Figure 5.  The 348.052.0 OTiPbZr  (PZT) molecule (Rabe, 2002). 

lead (Pb), zirconium (Zr), and titanium (Ti).  This material is also a subset of materials called 
perovskites that are composed of atoms of the 3ΑΒΟ  form.  In 348.052.0 OTiPbZr ,  Pb is the A atom 
and either Zr or Ti (randomly distributed) is the B atom. 

The author of figure 2 (Rabe, 2002) aptly describes this molecule’s behavior as follows: 

The ideal perovskite structure (ABO3) centred on a, the B site (Ti/Zr) 
and b, the A site (Pb). In the piezoelectric material PZT the Zr and Ti 
atoms are randomly distributed on the B sites. Using first-principles 
calculations Grinberg and colleagues2 show that each Pb atom 
displaces preferentially towards square green faces with the largest Ti 
fraction. These local distortions can be correlated with global structure 
and behaviour. For example, in PZT the displacement of the metal ions 
(Pb, Ti and Zr) away from the centre of their oxygen cages generates 
local polarization and ultimately ferroelectricity. c, The net 
polarization and overall structure of PZT changes with the ratio of 
Ti:Zr atoms, as shown in the x−T phase diagram. The six structural 
phases of PZT at ambient pressure are mostly ferroelectric, with the 
exception of antiferroelectric behaviour (A) near PbZrO3 and a 
paraelectric cubic phase (C) at high temperatures. Grinberg et al. show 
that the complex phase behaviour of different Zr/Ti compositions can 
be explained by averaging the changing distribution of Pb 
displacements, which depend on their local environment. T = Ti-rich 
tetragonal phase; R = rhombohedral phase; M = monoclinic 
ferroelectric phase. 
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3. Notation 

The following portion of this report concerns itself with incorporating the piezoelectric behavior 
of the PZT molecule shown in figure 5 into a mathematical formulation which can, in turn, be 
implemented by computational methods.  It is appropriate at this point to make clear distinction 
of the notation used throughout the rest of this report.  To discern between scalar and tensoral 
variables, we will use the standard indicial notation iu  for first-order tensors (i.e., vector 
variables), iju  for second-order tensors, ikju  for third-order tensors, etc.  In a three-dimensional 
(3-D) calculation, all tensor and vector indices span the range (1, 2, and 3).  Variables with no 
indices will be scalar quantities.  Moreover, variables in bold font (e.g., u ) will be tensor 
variables (order implied by usage), and unbold font will imply scalar quantities.  When 
discussing atomistic relationships, atom labels will be denoted by the lone indices i, j, or k in 
parentheses, usually as superscripts.  For example, )(ijr  (or ),( jir ) is the position vector from 
atom i to atom j (see figure 6). 

 
Figure 6.  Three atoms depicted in the reference and current configurations. 
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In this report, the term “fine scale” refers to events occurring at atomistic scales on the order of 
10 Angstroms, while the term “macroscale” refers to events occurring at scales larger than  
100 μm (i.e., visible to the naked eye).  The term “coarse scale” has a meaning synonymous with 
macroscale. 

4. Atomistic Behavior and the Constitutive Equation 

In formulating mathematical equations to model the physical world, material properties are 
incorporated via constitutive equations.  The classical constitutive equation used in solid 
mechanics on the macroscale is Hooke’s law, and the tensor variable possessing the material 
behavior is the elasticity tensor denoted IJKLC .  Hooke’s law is stated as follows:  

 KLIJKLIJ ECS = , (1) 

where IJS  is the stress tensor and KLE  the strain tensor.  In a loose sense, IJS  embodies the 
forces acting on a body while KLE embodies the displacements that occur as a result of these 
forces.  It is a reasonable assumption, therefore, that if material behavior normally associated 
with the PZT fine scale is to be mathematically embedded into equations describing the 
macroscale, the elasticity tensor seen in Hooke’s law is where the embedding should occur.  The 
formulation of an elasticity tensor encapsulating PZT atomistic behavior is needed for research. 

5. Atomistic Elasticity Tensor 

5.1 Atomistic Kinematics 

Figure 6 depicts three atoms (i, j, and k) in the reference and current configurations.  These 
atoms are located by Cartesian position vectors )()()( ,, JKIKIJ XXX and )()()(  and ,, jkikij xxx in the 
reference and current configurations, respectively.  The atoms may locally be described by their 
proximity to each other by the position vectors )()()( ,, JKIKIJ RRR and )()()(  and ,   , jkikij rrr , also 
shown in respective configurations.   

The angle created by two vectors subtending atom i is defined by the symbol )()( kijjik θθ = , where 
the atom subtended is the middle index.  The cosine of this angle is therefore as follows: 

 )(

)(

)(

)(

)(

)(

)(

)(
)(cos ik

ik

ij

ij

ik

ik

ij

ij
jik

rr
rr

r
r

r
r

⋅=⋅=θ , (2) 

and  

 )()()( ijijijr rr ⋅= . (3) 
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We note that all kinematic variables defined for any three atoms can be simplified to two vectors.  
For example, ),( )()()()( ikijjikjik rrθθ =  and )()()( ijikjk rrr −= .  Therefore, in what follows, the two 
truly independent variables are )(ijr  and )(ikr . 

5.2 Definition of Potential 

The form of the potential is given as follows: 

 ∑+∑=
<<< kji
kji

ji
ji

kjivjiv
,,

3
,

2 ),,(),(φ , (4) 

where the first summation denotes pair interactions and the second summation the interactions of 
atom triples.  Note that there is no factor of 1/2 contained in the equation because the summation 
conditions disallow double counting.  The pair and triple terms are defined as follows: 

 2 2 r( ij )v ( i, j ) f ( / )ε σ= , (5) 

and 

 3 3 r r r( ij ) ( ik ) ( jk )v ( i, j ,k ) f ( / , / , / )ε σ σ σ= , (6) 

where the constant ε is chosen to give the minimum of f2  at –1, and σ is chosen to make f2(2 6
1 )  

vanish.  These constants are given for Si in (Stillinger and Weber, 1985). 

The pair term is a function of the scalar distance between two atoms, i and j, and is defined as 
follows: 

 




≥
<−−

=
−−−

,
                                                ,0

      ],)exp[()(
)(

1

2 ar
ararrBrA

rf
qp

 (7) 

where A, B, p, q, and a are constants.  The range of the pair interactions is limited to a circular 
region of radius a around each atom.  The triple interaction is defined as follows: 

 ),,(),,(),,(),,( )()()()()()()()()()()()(
3

ikjkjkiijkjkjijikikijjkikij rrhrrhrrhf θθθ ++=rrr , (8) 

where 

 ( ) ( )[ ][ ]23
1)(1)(1)()()()( cosexp),,( +−+−=

−− jikikijjikikij ararrrh θγγλθ . (9) 

Based on the previous discussion that there are only two true independent variables, we can 
redefine h in the form of some functions )(ih  and )(ih  so that equation 8 can be rewritten as 
follows: 

 
),,(),(),(

),(),(),(

),(),(),(

)()()()()()()()()()()(

)()()()()()()()()(

)()()()()()()()()(
3

ikijikkijikijjikiji

kjkikjkjijikiji

kjkikjkjijikiji

hhh
hhh

hhhf

rrrrrrrr
rrrrrr

rrrrrr

−−+−−+=

++=

++=

 
(10) 
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where  

 ( ) ( )











+⋅



 −⋅+−⋅=

−−

3
1

)(

)(

)(

)(1
)()(

1
)()()()()( exp),( ik

ik

ij

ij
ikikijijikiji aah

r
r

r
rrrrrrr γγλ . (11) 

5.3 Finite Strain and Classical Continuum Mechanics 

The atoms labeled i, j, and k are assumed in the deformed configuration.  The equations thus far 
are only considering the instantaneous configuration to evaluate the energies from equation 4.  
From a Lagrangian continuum solid mechanics perspective, it is important to know how those 
atoms got there.  We therefore define atoms labeled I, J, and K as the reference configuration 
relative to the original Cartesian basis.   

We consider only affine deformations, meaning that the deformation process at the atomic scale 
is assumed to work in the same way as the continuum scale.  Under this one-to-one mapping 
assumption, position vectors in the reference configuration R get transformed to the current 
configuration r through the deformation tensor F, 

 , )()( IiI
I

IiIiii RFRFr ==== ∑FRr  (12) 

where repeated indices are assumed summation.   

We use the conventional strain measures for the Green strain and Right Cauchy-Green strain, 
respectively, as follows: 

 
1
2IJ iI iJ IJE ( F F ),δ= −  (13) 

and 

 IJ iI iJC F F= . (14) 

We can then obtain a host of elasticity tensors by taking second derivatives of a strain energy 
function.  From equation 4, the strain energy function is defined by the following: 

 ( )( ))(1 Rr
N

φφ −=Φ , (15) 

where N is the number of atoms.  Different types of elasticity tensors may then be determined.  
For example, we may choose among the following fourth-order tensors: 

 
klijkLiJKLIJKLIJ FFEECC εε ∂∂

Φ∂
∂∂
Φ∂

∂∂
Φ∂

∂∂
Φ∂ 2222

,,, , (16) 
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where the last tensor is based on the infinitesimal strain and would give the standard 
infinitesimal elastic constants after taking appropriate directional derivatives. 

The process for obtaining any of the elastic property tensors is identical.  We make repeated use 
of the chain rule to analytically determine the derivatives.  Let us consider the following elastic 
tensor as the illustrative example: 

 
KLIJ

IJKL CC ∂∂
Φ∂

=
2

C . (17) 

By making use of earlier definitions, we proceed as follows: 

 

. 

            
)()(

)()(

2)()(

)()(

2

)()(

)()(

2)()(

)()(

2

2

2

KL

pQ

IJ

mN

pQ

ij
j

mN

ik
i

ij
j

ik
ipQ

ik
j

mN

ik
i

ik
j

ik
i

pQ

ij
j

mN

ij
i

ij
j

ij
ipQ

ik
j

mN

ij
i

ik
j

ij
i

KL

pQ

IJ

mN

pQmN

KLIJ
IJKL

C
F

C
F

F
r

F
r

rrF
r

F
r

rr

F
r

F
r

rrF
r

F
r

rr

C
F

C
F

FF

CC

∂

∂

∂
∂





















∂

∂

∂
∂

∂∂
Φ∂

+
∂

∂

∂
∂

∂∂
Φ∂

+

∂

∂

∂
∂

∂∂
Φ∂

+
∂

∂

∂
∂

∂∂
Φ∂

=

∂

∂
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 (18)
 

It is important to recall that the summation convention does not apply to indices in parentheses.  
To complete the process of equation 18, we use the definition in equations 13 and 14 to obtain 
the following: 

 ( ) 1

11
)( −

−−

+=










∂
∂

=










∂
∂

=
∂
∂

QLpKQKpL
pQ

iLiK
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pQ FF
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F

δδ , (19) 

and equation 12 to obtain 

 ( ) )()(
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INImi
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IiI
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=
∂
∂ . (20) 

The only task that now remains is to evaluate the derivatives of the strain energy potential Φ 
with respect to the atomic vectors.  This is also a straightforward procedure.  We start with the 
first derivative as follows: 
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(21)

 

where the derivative in the first term is given by the following: 

 ( ) )(
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)(

1
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Note that 0// )()()()( =∂∂=∂∂ ij
p

ikik
p

ij rrrr .  Also, the derivative of the nonzero part of f2 is as 

follows: 
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A similar derivative needs to be evaluated for )(ih . 

Likewise, the key second derivatives that need to be derived are as follows: 

 )()(

2

)()(

2

)()(

2

)()(

2

,,, ik
q

ik
p

ij
q

ik
p

ik
q

ij
p

ij
q

ij
p rrrrrrrr ∂∂

∂
∂∂

∂
∂∂

∂
∂∂

∂ φφφφ , (24) 

which will contain expressions such as 
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By observing the equations thus far, the elastic stiffness tensor is fully determined.  The 
remaining task is extensive symbolic manipulations to obtain a closed form expression (if so 
desired) of the tensor, with repeated use of partial derivatives and chain rule multiplications.  
Due to the algebraic complexity of the potential function, the final expression is generally 
lengthy, but still obtainable.   

6. Variational Multiscale Formulation 

While the elasticity tensor formulated in section 5 will confine the displacement of PZT atoms to 
proper paths and distances within the atomic lattice, a coupling between these atomic 
displacements and the electric field E~  is needed.  Moreover, the governing equations for E~  
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(i.e., Maxwell’s equations) must be present in the overarching mathematical model since they 
share a role equal to those of solid mechanics regarding piezoelectric phenomenon.  To allow for 
this, the equations used in this model will be formulated in a variational multiscale framework.   

6.1 Multiscale Deformation 

In the variational multiscale context, the displacement u of any point in the body (assumed 
synonymous with an atom’s displacement) is decomposed into two parts αu and ,βu  whereby 

αu  is a local displacement on the fine-scale and βu  is a global displacement on the macroscale.  
Figure 7 shows a pictorial example of this notion. 

 

Figure 7.  Example of multiscale deformation as seen by a piezoelectric board experiencing bending.   

Figure 8 demonstrates some additional key points regarding variational multiscale deformation.  
In this figure, a hypothetically thin rod is used to demonstrate that (1) displacement αu  will have 
a magnitude on the order of Angstroms, while βu will have a magnitude on the order of meters; 
(2) strain is scale independent – a point that will be very important in subsequent sections; and 
(3) displacement βu  occurs due to the summation of a very large number of fine-scale 
displacements αu  occurring over the entire body. 
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Figure 8.  Some key points made by observing the deformations in a hypothetical thin wire.   

6.2 Multiscale Kinematics 

To accommodate fine-scale and coarse-scale equations, an additional intermediate configuration 
β  is introduced to the two-configuration arrangement seen in classical continuum mechanics (see 
figure 6).  The three configurations are shown in figure 9.  In this figure, the position of a point 
in the intermediate configuration is denoted by X . 

With these configurations, a logical definition of variables leads to simplistic equations. If 
displacements are defined as 

 XX:uα −= , (26) 

 Xx:uβ −= , (27) 

and  

 Xx:u −= , (28) 

then, as desired, βα uuu += .  Defining the deformation gradients as 

 
dX
dx:F = , (29) 
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Figure 9.  Multiscale kinematics.  Three configurations are used in this framework – 
reference, intermediate, and current (Creighton et al., 2004). 

 
Xd

dx:Fβ = , (30) 

and 

 
dX

Xd:Fα =  (31) 

yields the following equations: 

 αβFFF = , (32) 

 
X
uIF
∂
∂

+=
α

α , (33) 

and 

 ββ uIF ∇−= , (34) 

where the nabla symbol represents derivatives taken with respect the current position vector x

such that 
x∂
•∂

=•∇
)(:)( .  From these equations, we define the multiscale Green tensor as 

 ( )1FF
2
1E βββ T

+=:  (35) 

and the multiscale Right Cauchy-Green tensor as 
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 βββ FFC
T

=: . (36) 

For a rigorous derivation of the variables, see Creighton et al. (2004). 

6.3 Multiscale Governing Equations of Solid Mechanics 

With the kinematic variables defined, we recall macroscale equations.  Equations 37–39 are (1) 
the conservation of linear momentum, (2) a push forward of the second Piola-Kirchhoff stress 
tensor S to the current configuration, and (3) Hooke’s law.  Note the appropriateness of the β
superscript in the following macroscale equations (recall that βu is macroscale displacement):  

 βuρbσ =+⋅∇ , (37) 

 
TββSFF

J
1σ = , (38) 

and 

 βE:S C= . (39) 

Recalling equation 17 from section 5, the multiscale version of this equation becomes 

 ββ CC
Φ2

∂∂
∂

=C . (40) 

It should be noted that using βC in the derivation of the atomistic elasticity tensor C  is 
appropriate since strains are scale independent (see key point no. 2 in figure 8).  Conversely, 
incorporating the macroscale displacement variable βu into the formulation of C  would be 
inappropriate due to its scale. 

6.4 Governing Equations of Electromagnetism 

The governing equations for electromagnetism are Maxwell’s equations.   From these equations, 
a relationship for the electric field vector E~  can be written as follows: 

 0EEE =++×∇×∇  ~~~1 γε
μ

. (41) 

(See Weidlinger Associates Inc. [1991] for the derivation.)  Recognizing that the force exerted 
on a particle (or atom) of charge oq in an electric field is  

 EF ~
oq=  (42) 

and that Newton’s Second Law for the atom is 

 αuF m= , (43) 
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these two equations can be combined to create the following: 

 Euα ~
oqm =


 , (44) 

or, alternatively, 

 Euα ~~q=

 , (45) 

where  
m
qq o=~  and m = 

( )
2

)(52.0)(48.0 ZrmassTmass i ⋅+⋅   for the PZT at hand. 

Consequently, equations 37, 41, and 45 constitute three equations and three unknowns  which 
adequately describe the problem. 

6.5 Variational Equations 

Casting equations 37, 41, and 45 into the weak form for a numerical solution by the finite- 
element method, the problem is expressed mathematically as follows: 

 G1 0)dSu(wSt)d(wb)dS(w)dSu,σ(u:w
tt tt S

t
ββ

S S
t

β
t

β

S
t

βαβ =⋅−∂⋅−⋅−∇= ∫∫ ∫∫
∂

ρ:  (46) 

with unknowns }{ βα u,u . 

 G2 0)dSEu(w
tS

t
αα =−⋅= ∫

~~: qρ   (47) 

with unknowns }~{ E,uα . 

 G3 ( ) 0dSEEwdSEw
tt S

t
E

S
t

E =+⋅+







×∇×∇⋅= ∫∫  ~~~1: γε

μ
 (48) 

with unknown }~{E . 

7. Conclusions and Future Work 

7.1 Atomistic Elasticity Tensor 

The elastic property tensor will be a 3  3  3  3× × ×  fourth-order tensor which will have 81 
nontrivial terms.  All trivial/nontrivial terms and symmetries associated with the elastic tensor 
are determined solely by the crystal and NOT prescribed a priori.  The challenge for the PZT 
structure at hand will be to capture the behavior of the different types of atoms (which vary 
significantly) when formulating the elasticity tensor C .  Moreover, using the potential in 
equation 9 is meant merely as an illustrative example of the procedure since it neglects long-
range interactions common in piezoelectric materials. 



 15 

7.2 Multiscale Formulation 

Although the equations are all valid, issues concerning stability have not been addressed and will 
not be apparent until the stated weak form equations have been implemented and tested.  
Boundary conditions for αu and βu  also need to be addressed but can be modeled from earlier 
work in the field.  An initial approach might be to use periodic boundary conditions for αu  (used 
in most fine-scale molecular dynamics simulations), and boundary conditions typical of classic 
macro-scale solid mechanics for βu . 
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